Downloaded from rstb.royalsocietypublishing.org

TRANSACTIONS
OF SOCIETY

PHILOSOPHICAL THE ROYAL |

Anatomical connectivity defines the organization of clusters of
cortical areas in the macaque and the cat

Claus C. Hilgetag, Gully A. P. C. Burns, Marc A. O'Neill, Jack W. Scannell and Malcolm P. Young

B

]
§ > Phil. Trans. R. Soc. Lond. B 2000 355, 91-110
® = doi: 10.1098/rstb.2000.0551
Qﬁ =

[—
= Article cited i

rticle cited in:

Eg References http://rstb.royalsocietypublishing.org/content/355/1393/91#related-urls

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
(@)

To subscribe to Phil. Trans. R. Soc. Lond. B go to: http://rstb.royalsocietypublishing.org/subscriptions

This journal is © 2000 The Royal Society


http://rstb.royalsocietypublishing.org/content/355/1393/91#related-urls
http://rstb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royptb;355/1393/91&return_type=article&return_url=http://rstb.royalsocietypublishing.org/content/355/1393/91.full.pdf
http://rstb.royalsocietypublishing.org/subscriptions
http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org

[l THE ROYAL
®]&G SOCIETY

Anatomical connectivity defines the
organization of clusters of cortical areas in
the macaque monkey and the cat

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Claus-C. Hilgetag'’, Gully A. P. C. Burns’, Marc A. O°Neill', Jack W. Scannell'
and Malcolm P. Young'

'\ Neural Systems Group, Department of Psychology, University of Newcastle upon Tyne, Ridley Building,
Newcastle upon Tyne NEI 7RU, UK

2University of Southern California Brain Project, University of Southern California, Hedco Neuroscience Building, Los Angeles,

G4 90007, USA

The number of different cortical structures in mammalian brains and the number of extrinsic fibres
linking these regions are both large. As with any complex system, systematic analysis is required to draw
reliable conclusions about the organization of the complex neural networks comprising these numerous
elements. One aspect of organization that has long been suspected is that cortical networks are organized
into ‘streams’ or ‘systems’. Here we report computational analyses capable of showing whether clusters of
strongly interconnected areas are aspects of the global organization of cortical systems in macaque and
cat. We used two different approaches to analyse compilations of corticocortical connection data from the
macaque and the cat. The first approach, optimal set analysis, employed an explicit definition of a neural
‘system’ or ‘stream’, which was based on differential connectivity. We defined a two-component cost func-
tion that described the cost of the global cluster arrangement of areas in terms of the areas’ connectivity
within and between candidate clusters. Optimal cluster arrangements of cortical areas were then selected
computationally from the very many possible arrangements, using an evolutionary optimization algo-
rithm. The second approach, non-parametric cluster analysis (NPCA), grouped cortical areas on the
basis of their proximity in multidimensional scaling representations. We used non-metric multidimen-
sional scaling to represent the cortical connectivity structures metrically in two and five dimensions.
NPCA then analysed these representations to determine the nature of the clusters for a wide range of
different cluster shape parameters.

The results from both approaches largely agreed. They showed that macaque and cat cortices are organ-
ized into densely intra-connected clusters of areas, and identified the constituent members of the clusters.
These clusters reflected functionally specialized sets of cortical areas, suggesting that structure and func-
tion are closely linked at this gross, systems level.

Keywords: corticocortical connections; anatomical connectivity; evolutionary optimization;
cost functions; non-parametric cluster analyses; multidimensional scaling
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1. INTRODUCTION

A complex network of anatomical fibres links areas and
nuclei in the brain. This network largely determines each
region’s inputs and its outputs, and so its structure frames
the contribution any region can make to information
processing in the whole nervous system, and hence
presumably to behaviour. Neuroanatomical experiments
have generated a wealth of information about the existence
or absence, and sometimes also about finer details, of
connections linking particular cortical areas with others.
Reliable information on how neural systems are organized,
however, cannot be gained simply by inspecting these
complex data, in the same way that conclusions drawn

*Author and address for correspondence: Boston University School of
Medicine, Department of Anatomy and Neurobiology, 700 Albany
Street W746, Boston, MA 02118, USA (claush@bu.edu).
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from inspection of complex spike raster patterns without
proper analysis would be prone to error. Data analysis is
required. In previous studies (e.g. Young 1992, 1993;
Scannell et al. 1995; Young et al. 1995) we have used simple
inferential statistics, multidimensional scaling, matrix
transforms and seriation algorithms to investigate the
general topology of neural systems in primates and cats,
and we have also used computational methods to imple-
ment hierarchical analysis (Hilgetag et al. 1996) to study
other aspects of neural systems’ organization.

An influential idea in cortical neuroscience has been
that the cortex is not homogencous but divided into
‘streams’, ‘systems’ or ‘clusters’ of areas, which are consid-
ered to be related functionally and anatomically. These
three terms have been used somewhat interchangeably.
Although these aspects of organization have long been
argued to be apparent in the primate visual system (e.g.
Ungerleider & Mishkin 1982; Goodale & Milner 1992),

© 2000 The Royal Society


http://rstb.royalsocietypublishing.org/

b

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

92 C.-C. Hilgetag and others

Connectivity clusters in macaque and cat cortex

the existence of streams in cortical systems has been
debated repeatedly (e.g. Simmen et al. 1994; Young et al.
1994, 1995; Goodhill et al. 1995).

These debates have often focused on whether there are
or are not distinguishable streams within the primate
cortical visual system (Merigan & Maunsell 1993). We
have previously tried to bring a quantitative approach to
this issue, and in doing so, have examined whether the
incidence of connections is or is not as predicted under
the competing hypotheses (Young et al. 1995). If the
system 1is split, for instance, then the elements of the puta-
tive dorsal stream should be significantly more connected
with their associates than with the elements of the ventral
stream, and vice versa. Furthermore, there should also be
significantly more confirmed-absent connections between
dorsal and ventral areas than within each of these group-
ings. In both analyses, a simple x*-test rejected the null
hypothesis decisively, indicating that the system is indeed
divided (Young et al. 1995).

The requirement to define in what way real data might
quantitatively support or deny these hypotheses forced us
to specify an explicit definition of a connectionally differ-
entiated cluster (or system or stream). According to our
definition, a cluster is a set of structures that are more
connected among themselves than they are with any
other structures, and more disconnected from other struc-
tures than they are among themselves. This definition is
sufficiently general that it could apply within or without
the primate visual system, for which it was defined. In the
specific case of the primate visual system, however, while
the x>-tests show that the incidence of connections is as
predicted by the preclassification of structures into two
streams, the analysis does not explore the possibility that
better classifications of the structures into other clusters
could be found. Hence, the x*-analysis cannot itself rule
out the possibility that there are more than two streams
within the system. We were interested in whether clusters
of areas that optimally fit the explicit criteria could be
found computationally, both in the primate visual system
and in cortical systems in general.

We developed two independent approaches to explore
this question. In the first, optimal set analysis (OSA),
clusters of arecas that optimally fit the explicit criteria
were sought computationally by an optimization algo-
rithm that used an explicit cost function derived from our
cluster definition. We believe that this approach is novel,
and that it may be useful for other data-analytical
problems involving complex networks in other disciplines.
In the second approach, we combined existing data-
analysis methodologies, and used non-parametric cluster
analysis (NPCA) to produce automatic classifications of
groups of structures by examining relationships in the
connection data. Some of the results have been reported
previously in abstract form (Hilgetag et al. 1998).

2. METHODS
(a) Data

We analysed information from four different sets of cortical
connectivity data: (i) a global compilation of primate cortical
connectivity (Young 1993) with 834 connections between 73
areas; (ii) data for 319 interconnections of 32 areas in the

macaque visual system (Felleman & Van Essen 1991) (this set
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also included explicit information about 382 potential links
between areas that have been reported absent (Felleman & Van
Essen 1991)); (ii1) connectivity data for the somatosensory-motor
system in the same species (66 connections between 15 areas,
Felleman & Van Essen 1991); as well as (iv) a global collation of
cat cortical connectivity (892 interconnections of 55 areas, see
figure 1). The first three data sets comprised information about
the existence or absence of a particular connection. The cat
data also included ordinal information about the relative
connection densities. The collation of cat cortical data was
developed from the data set described in Scannell e/ al. (1995)
and forms part of a larger database of thalamocortical connec-
tivity of the cat (Scannell et al. 1999). This set of connectivity
data is available for detailed scrutiny at http://www.flash.ncl.
ac.uk/ptrs/cor.thal.html.

In the following sections, we describe the two analytical stra-
tegies that we used to delineate the organization of connection-
ally defined clusters in the mammalian cortex.

(b) Optimal set analysis

We developed a new optimization method (OSA) akin to one
we previously employed in the analysis of hierarchical relation-
ships in the cat and macaque cortex (Hilgetag e/ al. 1996;
Hilgetag, O’Neill & Young, this issue). In our approach, we
specified a cost function that evaluated the overall cluster
arrangement of cortical areas. The cost was then optimized, by
rearranging the network of areas, using a modified simulated
annealing algorithm (Laarhoven & Aarts 1987). Our method is,
generally speaking, a stochastic optimization technique.
Stochastic optimization is an efficient approach for circumnavi-
gating the problems associated with evaluating complex, incon-
sistent and incomplete data sets by means of simple integer cost
functions (Hilgetag et al. 1997). It can find optimal solutions
when the solutions space is too large for exhaustive search and
inaccessible to analytical methods. Such conditions presented
themselves here. As regards the size of the search space, sets of
73 areas (as in the data for the primate cortex) can be reparti-
tioned into different subsets (that is, clusters) in more than

/.= 107" ways, according to the formula

p=3 s

m=1

m

—Z{WZ(— 1)'"*"(';1)/:"}. (1)

Sy is a Stirling number of the second kind describing all
possible ways of partitioning a set of n elements (here n = 73)
into m non-empty subsets (Abramowitz & Stegun 1972), m
ranges from 1 to the largest possible number of clusters, #; and £
is an index variable. There are fewer possibilities for partitioning
the smaller visual, somatosensory and cat connectivity data sets
=32, ny, =16, and n., =55 areas, but these data still
allow huge numbers of potential candidates, in the order of
Agis>10% 2 >10" and 4, > 10%, respectively. Search spaces
of these magnitudes present insurmountable problems for

with Myis som

exhaustive approaches.

We defined a two-component integer cost that allowed us to
evaluate if a particular grouping of the areas represented a ‘good’
overall cluster arrangement, according to our definition of clus-
ters as sets of areas that are much more connected with each other
than with other cortical areas, and much less connected with
other areas than among themselves. Such a concept is mirrored
by recent definitions given by other authors (e.g. Tononi et al.
1998). A particular partitioning of areas into clusters was consid-
ered optimal, if it fulfilled the following two conditions:
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satisfied by an arrangement in which every individual area

Cortical connectivity of the cat. The entries indicate: 0, absent or unknown connection; 1, weak connection;

tions between all different clusters;

(i) CO2 (‘repulsion’):

These data are part of a larger compilation of cat thalamocortical connectivity (Scannell ez al. 1999). For abbreviation of area
(1) COLl (‘attraction’): there exist as few as possible connec-

2, moderately strong connection; 3, strong connection; N, intrinsic connections of the areas, which are not considered here.
names see Scannell et al. (1995).

Figure 1.
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condition tends

this

Therefore,
towards the subpartitioning of clusters, and we termed it the

forms a separate cluster.

areas,

of individual

the number

and the weights that were assigned to the two cost components
The evolutionary algorithm we used for minimizing the cost

conditions together can lead to a number of clusters that lies
(see §3).

‘repulsion’ component. Minimizing the attraction and repulsion

between just one and
depending on the distribution of connections among the areas

there are as few as possible known

absent connections within all clusters.
Condition COIl on its own would be perfectly fulfilled by an

satisfy condition COI tends to reduce the overall number of
clusters, for which reason we termed it the ‘attraction’ compo-

sally inclusive cluster, which would allow no connections at all
between different clusters. This demonstrates that trying to

arrangement that collects all individual areas into one univer-

40
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function is illustrated in figure 2, and is now described.

nent. On the other hand, condition CO2 alone can be perfectly

Phil. Trans. R. Soc. Lond. B (2000)
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Figure 2. Evolutionary optimization algorithm. The diagram
outlines the logical flow in the algorithm used for optimal set
analysis. The two-component cost function used for the
evaluation of candidate area arrangements is based on an
explicit cluster definition (equation (3)). See text for details of
the single steps in the procedure.

(1) Imtialization

The computation of optimal arrangements proceeded in
epochs that began with an arbitrary assignment of all areas to
randomly created clusters. Typically, 50 epochs, each with
different initial random configurations, were computed through,
and up to 50 different optimal solutions could be collected per
epoch. Generally, however, the number of optimal arrangements
found per epoch was smaller than this (see §3).

(i) Evolution

The processor automatically determined the composition and
the number of clusters in the optimal solutions by means of
random, evolutionary modifications. Cluster arrangements were
modified by two different kinds of mutations: an area could be
assigned to a different cluster, which already existed or was
newly created by this mutation. Alternatively, areas in two
different clusters could be swapped. These simple modifications
ensured that descendant structures varied little from their
parents, so that the search space was examined at high resolu-
tion. The search could be restricted to optimal arrangements
with a given number of clusters, if required.

The value of a candidate structure produced during an epoch
was evaluated in integer units according to the two-component
cost function set out above. For the data sets that contained only
information about the existence or absence of connections, each
single deviation from a perfect cluster arrangement was counted as
one unit. The cat data set was evaluated in two different ways.
First, the data were just considered as information about existing or
absent connections (‘binary classification’). These data were then
analysed in the same way as the data on all other cortical systems.
Second, information about the three different strengths of existing
connections was incorporated (‘quaternary classification’). In this
approach, departures from a perfect arrangement under the attrac-

Phil. Trans. R. Soc. Lond. B (2000)

tion part of the cost function were counted in the respective units of
connection densities: 1 (for weak), 2 (for intermediate), or 3 (for
dense). Where this was possible on the basis of the available data
(that is, for the primate visual data), we distinguished between
connections reported absent and those hitherto unreported,
excluding the latter ones from the analysis. For all other data sets,
unknown and explicit absent connections were treated as equal
and were thus counted in the repulsion component.

Additionally, the attraction and repulsion components of the

cost function were multiplied with weighting factors, w,,, and
Wrep, SO that the total cost, Gy, Tesulted as
Crotal = Wair X O + Wyep X Crep: (2)

and

Cuw=Y _magNa, b, A, B: a € 4,b € B, AN B=0, m,, ={1/2|3},

(3a)
Crep = |{mab}|’ VLZ, ba A: a € Aa b € A) Mgy = {0}7 <3b>
my, € M, a#b.
Hence, C,;,, was computed as the sum of all positive connections

strengths, m,, for all the connections (g, b) that ran between all

non-overlapping clusters 4 and B; whereas C,

rep Was computed

as the (cardinal) number of the all absent connections within all
clusters. The connection strengths m,, are elements of the
connectivity matrix M.

We computed series of different optimal solutions by varying
rep in

cither of the weights of attraction or repulsion, w,,, and w

attr
the combined cost function. Weights for the repulsion compo-
nent were increased in steps of one. For the cat connectivity
data, the attraction weights were increased at steps of one-third,
to obtain a sufficiently fine transition between differently
weighted cluster solutions, despite the influence of the individual
interaction strengths. The attraction weights in all other data
sets were increased in steps of one.

The weights in the series ranged from w
W =40 (while w

attr

=1 to maximally

rep=2 to

kept constant as 1). Higher w.

attr
rep Peing kept as 1), and from w

maximally w,., =30 (with wy, attr

led to fewer, bigger clusters (in the limit case to just one),
whereas higher w,,, led to more and smaller clusters.

(ii1) Selection

If a descendant structure possessed a cost that was not higher
than 125% of the parental cost, it was considered for further
optimization, provided that in turn a (secondary) descendant
structure could be found within the same cost limit. This upper
threshold value was established experimentally. We found that
for values above 135% for the selection threshold, the algorithm
did not descend to lower cost arrangements efficiently. A selec-
tion threshold of higher than 100% allowed the algorithm to
withdraw from local minima. If the requirements for the
descendant cost could not be met, the algorithm tracked back
and introduced a different mutation.

(iv) Validation

A computed structure was accepted as new, and kept in the
set of solutions, if (i) it possessed a cost that was lower than, or
not more than 1% higher than, the cost of any solution encoun-
tered up to that moment; and (ii) was different from all other
stored solutions. We programmed the processor to collect
optimal solutions within a 1% band of the lowest cost found,
because relatively few optimal solutions were detected, and their
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costs were not so low that it seemed acceptable to ignore struc-
tures of only slightly higher cost.

Often, more than one optimal arrangement was found by
this procedure. 1o summarize all optimal structures, we used a
cluster-count representation as described in §2(d). The optimi-
zation algorithm was programmed in ANSI CG/C++ and ran
on a DEC ALPHA 3000-600 UNIX workstation with 256 Mb
of RAM. Central processing unit time for completing 50 opti-
mization epochs for one data set ranged from several hours to
a few days, depending on the size and density of the connec-
tivity data set being analysed.

To restate the goal of our approach, we applied evolutionary
optimization techniques to investigate the organization of
networks. This, however, does not mean that we assume that
these biological networks necessarily possess any clustered
aspect to their organization, or that existing clusters should be
optimally arranged according to the criteria we use. However, if
cortical systems actually do possess a clustered organization,
then the object of our approach is that the clusters evolved by
our processor should optimally reflect the cluster structure
inherent in the real brain.

(c) Multidimensional scaling and non-parametric

cluster analyses

In an alternative approach, we employed statistical cluster
procedures (NPCA) that detect spatial relationships among
distributions of points in metric coordinate systems. For this
analysis, the ordinal connectivity data which represent pairwise
anatomical relationships between areas had to be converted
into metric distances that preserve as closely as possible the
connectional relationships between areas. We used non-metric
multidimensional scaling (NMDS) (e.g. Kruskal 1964a,b) for
this transformation. The combined approach of NMDS and
NPCA is described in detail in the companion paper by Burns
& Young (this issue), and we refer interested readers to this
description.

Following Burns & Young (this issue), we generated two- and
five-dimensional (2D and 5D) NMDS configurations for all
given connectivity matrices, using the FIT =1, 2 and 0.5 cost
functions under the tied and untied approaches in the SAS/
STAT MDS procedure (SAS Technical Report P-229 SAS/STAT
Software; SAS Institute, Inc. 1990). We used the SAS MODE-
CLUS function for NPCA with significance testing. len separate
MODECLUS jobs (using the standard algorithm, method =1)
were run on each configuration according to four different
kernel paradigms; see Burns & Young (this issue) for details of
the paradigms and parameter settings. The results from these
were summarized in cluster-count

analyses matrices, as

described in the following section.

(d) Representation and validation of results

To compare the results from the different analysis approaches,
we defined a common format for the representation of the
obtained results. Several individual results were grouped
together in symmetrical ‘cluster-count’ matrices, K, to demon-
strate consistent features across the different runs within the
same analysis approach. The cluster-count matrices showed the
relative frequency by which any two areas were found in shared
clusters in different runs, and thus indicated the association of
the respective areas. The order of areas within each cluster-
count matrix was re-sorted in such a way that areas were
followed by other areas with which they had the highest associa-
tion possible. This procedure tended to group together the main

Phil. Trans. R. Soc. Lond. B (2000)

clusters and so allowed easier interpretation of the overall
cluster structure. The association values in the matrices were
shaded according to a greyscale distribution from white (for 0%
association) to black (100%).

Additionally, we transformed some of the matrices A into
cluster trees to show the overlap and consistency of the cluster
arrangements for different significance thresholds. In this repre-
sentation, areas were given a lighter shading, starting from the
significance threshold at which they completely disconnected
from any other cluster. To investigate the linkage of the OSA
clusters, we also computed matrices that indicated the relative
frequency of existing connections between clusters and non-
existing connections within clusters for all pairs of areas across
all optimal solutions. From these matrices we produced
diagrams to show the areas that most frequently contributed to
the attraction or repulsion cost. All routines for the representa-
tion of cluster-count matrices or trees were written in Visual-
Basic for Excel (v. 7).

For the OSA approach, cluster-count matrices summarized
the multiple optimal configurations obtained for specific settings
of the attraction and repulsion cost weights. The settings most
straightforward to interpret were the ‘balanced’ case (attraction
and repulsion weights equal, and equal to one) and the ‘high-
repulsion’ condition, where all non-existing connections have
been moved outside of the clusters due to sufficiently high-
repulsion weight settings. We also computed ‘averaged’ cluster-
count matrices which summarized the optimal configurations
obtained for all weight settings between ‘high repulsion’ and
‘high attraction’ (the setting which led to all areas being
assembled in one big cluster).

In the case of the NMDS—NPCA analyses described in §2(c),
cluster counts were computed for method-specific subtypes of
the analyses. In particular, for the dimensionality of the NMDS
representations (2D or 5D), the NPCA kernel paradigms (fixed-
radius or nearest-neighbour) and, in the case of the cat connec-
tivity data, for the different classifications of connection
strengths (binary or quaternary classification). We also
computed matrices summarizing all different conditions. Within
the averaged counts, the cluster counts of each non-parametric
cluster tree were weighted equally so each paradigm or para-
meter setting contributed by the same amount to the overall
cluster-count score. The association values accounted for the
significance of clusters. If a cortical area had been in a cluster
that was subsequently dissolved under the SAS JOIN option, the
area would not contribute further to the cluster count (that is, it
would not be counted as being in the same cluster as any other
structures, including itself). This explains how some representa-
tions resulting from the NPCA indicate associations between an
area and itself of less than 100%.

We compared the results of the different approaches with
each other, and against the background of randomly created
data. The random data were produced by randomly reshuffling
entries in the connectivity matrices, thus preserving the distri-
bution of existing and absent connections as well as the strengths
of connections, and by subsequent OSA of the reshuffled
matrices (treating a population of 20 random matrices, under
the ‘balanced’ weights setting). OSA and NPCA results were
compared by correlation analysis. The respective cluster-count
matrices were rearranged so as to correspond to each other in
the same order of areas (the ‘balanced’ OSA results were consid-
ered the standard for a particular data set), and R- and R’
values for all n xn corresponding entries in the matrices Kogp
and Kypca were computed, using Excel’’s CORREL function.
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Table 1. “Small-world’ coefficients for cortical connectivity networks of the cat and the macaque monkey

(The indices were computed according to the definitions given in (Watts & Strogatz 1998). Values for p(L) and p(C) are the
probabilities that the coefficients for the real connectivity data stem from the respective populations of random values. The
probabilities indicate that the coeflicients for the real data are highly significant.)

chal N’Lmn 6Lmn ﬁ(L) Crcal :u’cran 6Cmn ﬁ(c)
macaque: visual 1.69 1.65 0.005 8x 1071 0.594 0.321 0.009 0
macaque: somatosensory 1.77 1.72 0.044 0.244 0.569 0.312 0.04 8x10-U
macaque: whole cortex 2.18 1.95 0.005 0 0.49 0.159 0.005 0
cat: whole cortex 1.79 1.67 0.002 0 0.602 0.302 0.006 0

The R%-values represented the percentage of variability in the
balanced OSA results that accounted for the variability of the
result sets under investigation.

3. RESULTS

Before entering the detailed analyses described in the
previous sections, we sought preliminary but independent
assurance that cortical connectivity implies a clustered
cortical organization. This assurance can be derived from
computing network indices that have recently been
proposed by Watts & Strogatz (1998) to investigate sparsely
connected networks. Table 1 presents local clustering coeffi-
cients, (, and characteristic path lengths, L, for the actual
anatomical connectivity data and for populations (n=20)
of the same, but randomly reshuffled data sets, respectively.

The coefficient L, which stands for the characteristic
path length of the actual and randomly rearranged
connectivity data, indicates the average shortest path,
measured as the number of intermediate areas, between
any two areas. We return to this feature of cortical
connectivity in §4.

The clustering index € describes the number of connec-
tions, out of all those possible, that have been reported to
exist among the neighbours of any node in the network,
averaged over all nodes. This measure informs on the
‘cliquishness’ of all local neighbourhoods in a network
(Watts & Strogatz 1998). For completely randomly
connected networks, ¢ is close to the number of actual
connections in the network, normalized by the number of
connections that could be realized between all network
nodes. Comparing the entries in columns 6-8 of table 1,
which present the indices of the real connectivity data
and the mean, u, and standard deviation, 6, for the
random data demonstrates that the local clustering of the
real data is significantly greater than that of randomly
reshuffled data. These results underline the fact that the
actual connectivity data clearly possess dense local clus-
ters, with an average local connectivity nearly twice as
high as the average global connectivity among the areas.
The nature and membership of these local clusters can be
determined from the results of the two varieties of cluster
analyses we developed, and we now turn to a detailed
description of these results.

(a) Macaque cortex—OSA
Optimal set analysis of the whole macaque connectivity
data set yielded clusters shown in figure 3a. This diagram
represents 50 different optimal cluster arrangements that
resulted from optimizing the cost in equation (3) with

Phil. Trans. R. Soc. Lond. B (2000)

identical weights for attraction and repulsion (w,,,
=w,, = 1). We refer to this setting as the ‘balanced” condi-
tion. The optimal arrangements for this condition
consisted of 22 to 25 clusters and carried a combined cost
of 628—632. The cost component for connections between
clusters ranged between 545 and 568, while the compo-
nent for non-existing connections within the clusters
varied between 60 and 78. Many clusters in the optimal
solutions contained only very few areas, or consisted of
individual areas. Five larger clusters, however, also
appeared consistently (with a relative frequency of
>60%) throughout the optimal arrangements. These
clusters were formed by the areas: (1) AI'Tv, Al3, ER, TSI,
TS2, TGd, A35, TGv, the amygdala; (ii) LIP, VIP, DP,
PO, FST, MS1d, MST1, FEF; (iii) PIP, V3A, MT(V5),
V1, V2, V3, V4, VP; (iv) A3, A5, A6, R1, S2, TPt, A7b;
and (v) TF, A9, TH, A23, A24, TS3, STPa, A7a, STPp,
A46. At higher relative attraction weights, these clusters,
as well as individual areas, joined up to form fewer, larger
groups. A small cluster that was consistently separated
from the other ones and persisted after the remaining
clusters joined up was formed by areas PAL, PAAR,
PROA, REIT, KA and PAAC.

Figure 3b,¢ shows the areas that were the main contri-
butors to the attraction and repulsion costs under the
balanced condition. Figure 34 presents the 20 leading
originators or recipients of connections running between
optimal clusters. Such areas could be considered impor-
tant nodes of communication in the network of area
clusters. The averaged frequency of inter-cluster connec-
tions for all 50 optimal configurations was normalized
by the absolute number of connections an area sends or
receives. The diagram therefore indicates the percentage
of connections, of all those an area possesses, that link
the area to other areas in different clusters. Figure 3¢
shows the 20 areas contributing most to the cost of non-
existing connections within clusters. Again the frequency
of connections is averaged over all 50 optimal solutions
and normalized by the total number of non-existing
connections the areas possess. The diagram demonstrates
that the relative frequency of the area’s non-connections
within its cluster is small compared to the frequency of
connections it makes with other clusters. The latter
component would therefore be the more influential
factor in the optimizations that determined the overall
configuration of clusters.

All areas were grouped together in a single cluster at
an attraction weight of more than 40. On the other end of
the spectrum, all non-existing and unknown connections
were located outside of the clusters for all optimal
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Figure 3. (a) Global optimal sets of areas for the primate cortex, derived with balanced attraction and repulsion weighting of the
cluster-cost components. Auxiliary lines are plotted to facilitate the recognition of area assignments to clusters. (5) Top 20 areas
that were most strongly contributing to inter-cluster connectivity in all optimal configurations summarized in figure 3a. The
frequencies of originating or received connections were normalized by the number of optimal solutions (50) and by the total
number of connections the respective area possesses. Frequencies of inter-cluster connections are given by lighter bars, frequencies
of absent connections within the clusters by darker ones. (¢) Top 20 areas ranked according to their contribution to repulsion by
non-existing connections within the clusters in the optimal arrangements in figure 3a. The connection frequencies are normalized
by the number of optimal solutions and all non-existing connections an area is involved in. Since the frequencies of absent
connections were comparatively small, it was mainly the structure of existing connections that determined the optimal
organization of the overall arrangement.
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Figure 4. Summary of 50 optimal ‘building-block’ configurations for the macaque cortex for high-repulsion weight setting (=6).

arrangements at repulsion weights equal to, or higher
than, six. Such ‘high-repulsion’ settings produced 50
optimal solutions with 37 to 41 clusters, which were
interconnected with 692 to 696 connections. Figure 4
shows a summary of these optimal configurations. As
there were no established absent connections left within
the clusters, these represent the most compact and irredu-
cible groupings of areas possible, and we have previously
termed such groups ‘building blocks’ (Hilgetag et al.
1998). Building blocks that consistently appeared in these
solutions were: (1) TF, STPa, A7a, STPP, A46; (11) V4,
V3A, V1, V2, V3, (iii) LIP, VIP, MT, FST, MSId, FEF;
(iv) Al3, ER, TSI, TGd, TGv; (v) A5, Rl, A7b, S2, TPt;
(vi) A9, A24, A32; and (vii) ID, IG, AMYG.

Because areas were joined in one inclusive cluster only
for very large attraction weights (>40), representations
that summarized over all the weight settings were
strongly skewed towards the configurations resulting from
high atttraction weights. For this reason we refrained
from presenting such a global summary for this data set.

Phil. Trans. R. Soc. Lond. B (2000)

(b) Macaque cortex—NMDS-NPCA

We analysed the data set examined by OSA in the
§3(a) with the non-parametric clustering approach, as
described in § 2. We then computed cluster-count summa-
ries across the various parameter combinations for this
approach, and compared these summaries against the
cluster-count plot of configurations obtained for the
balanced OSA approach. The correlation coeflicients for
comparing with the different NMDS—NPCA summaries
ranged between R=0.41 and R=0.47 The agreement
between the independent analysis approaches was, there-
fore, only slightly worse than for different conditions
within the OSA approach itself, and much better than for
random data, see § 3(h).

(c) Macaque visual system—OSA
In the case of the primate visual system, we obtained
six different optimal solutions, at a total cost of 135, with
the attraction cost component ranging between 77 and 90
and the repulsion cost between 42 and 58 (for atttraction
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Figure 5. (a) Optimal sets of primate visual areas for balanced attraction and repulsion weighting. This summary is based on six
optimal area arrangements. (6) Ranking of visual areas according to their contribution to inter-cluster connections in the
arrangements shown in figure 5a. The relative frequencies are normalized in the same way as those in figure 35. The figure also
indicates the normalized frequencies of any non-existing linkages that the areas were involved in. The latter ones are given in
darker bars, whereas frequencies of inter-cluster connections are shown in lighter shading.

and repulsion weights both set to one). The arrangements
in these solutions, depicted in figure 5a, show a clear
separation of the visual areas into two main clusters. The
first group comprised areas MST1, MT, LIP, V2, V3, VP,
V3A, PIP, V4, V4¢, FST, VIP, DP, PO, FEF and MSId,
and the second STPp, PI'ld, TF, TH, AI'ld, PITv, CI'ld,

Phil. Trans. R. Soc. Lond. B (2000)

46, AI'lv, CI'Ty, STPa and 7a. Primary cortical area V1
associated with the first group in one-third of the solu-
tions and formed a separate cluster in the others. The
only area with an alternating preference for the two
groups was area VOT, which appeared in the first cluster
in one-third of the solutions and in the second cluster in
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the remaining solutions. Areas MIP and MDP formed
another separate cluster, which was split in 50% of the
solutions. Little is known, however, about the connec-
tivity of these areas. Only two efferents are listed for each
of the areas by Felleman & Van Essen (1991). We conse-
quently considered separate clusters formed by MIP and
MDP to be artefactual.

Figure 5b shows the contribution of the individual
areas to connections between the clusters, and non-
connections within the clusters, in all optimal configura-
tions. These relative frequencies are again normalized by
the total number of connections and non-connections an
area possesses. Low relative frequencies for the inter-
cluster connections, of less than 0.5, indicate that the
areas are relatively closely integrated in their respective
clusters, as they form most of their existing connections
within the clusters.

For increasingly higher attraction weights, first V1 and
VOT joined the first of the clusters given above, while at
attraction weights of 17 and above, a single cluster of all
32 areas emerged as the single optimal solution. This
solution carried a repulsion cost of 382, that is, identical
to the number of established non-existing connections.

The number of clusters in the optimal arrangements
increased for higher repulsion weights. At weights equal or
larger than seven for this part of the cost function, the
repulsion cost was zero, indicating that all non-existing
connections were located outside the clusters. A further
increase of the weight for this cost component would,
therefore, not lead to different optimal arrangements, and
the resulting high-repulsion weight clusters represent
building blocks of the visual system’s connectional organ-
ization. Figure 6¢ summarizes the six optimal configura-
tions that resulted from a repulsion weight of seven. These
solutions consisted of six to eight clusters and possessed
attraction costs of 192 or 193. The main groups of areas, as
outlined by figure 6a are: (i) STPp, STPa, TF, TH, 46, 7a;
(i) LIP, DP, V4, V4t, FST; (i) VOT, PI'ld, PI'ly, CI'ld,
Ally, CI'ly, AI'ld; and (iv) MT, V2, PIP, V3, VIP, PO,
VP, V3A, FEF, MSId; while area VI formed a separate
cluster. Area MSTI tended to associate with the first of the
listed groups. The last cluster in the list, (iv), existed in this
composition in all of the optimal solutions, whereas some
areas in the other groups showed alternating member-
ships. These building-block groups are the most compact
clusters that fulfil our definition of optimal cluster
arrangements. Figure 64 shows the ranking of areas
according to the relative frequency with which they sent
or received connections between the building blocks.

Figure 7a summarizes the whole spectrum of possible
solutions, obtained for weights between repulsion equal to
7 and attraction equal to 17 (while keeping the opposite
cost component weighted at one). The figure shows the
associations between 155 optimal cluster arrangements.
Despite some variability in this summary, a number of
distinct groups can be recognized. The hierarchical tree
diagram in figure 75 presents the data in another format
and shows directly which areas consistently formed clus-
ters, given a particular association threshold.

(d) Macaque visual system—NPCA
The general picture of the visual system’s organization

was confirmed by the results from the NPCAs. Figure 8

Phil. Trans. R. Soc. Lond. B (2000)

shows the pooled data from all 2D clustering computa-
tions for the primate visual system using a wide range of
parameters for describing the fixed-radius kernels of
potential clusters. The figure clearly reproduces the
general dichotomy of the primate visual system. It also
suggests further subdivisions of the two main clusters,
most clearly for the ‘earlier’ areas V1, V2, V3, MT, V3A,
V4t, VP and PIP, and the ‘later’ ones VIP, MSTI1, PO,
LIP, MSTd, FST, DP and FEF. The correlative agreement
of this summary with the balanced OSA solutions was
R=0.63, the cluster-count summary of all NMDS-
NPCA configurations agreed with the main OSA results
by R=0.55-0.63.

(e) Macaque somatosensory-motor system—OSA

We analysed a compilation of somatosensory-motor
area connectivity published by Felleman & Van Essen
(1991). When attraction and repulsion were balanced,
there was a unique optimal arrangement of four clusters
and one isolated area, area 36 (see figure 9a). The clusters
were: (1) 1d, 35; (i1) SMA, 4, 5, 6; (i11) 1, 2, 3a, 3a, Sll;
and (iv) lg, 7b, Ri. This arrangement carried a weight of
34 (30 connections between the clusters, four non-existing
connections within the clusters). We found that only one
cluster resulted from attraction weights of 40 or above. At
higher repulsion weights, of six and above, all non-
existing connections were located outside the clusters,
while 40 connections linked the building-block clusters
shown in figure 95. We also computed NMDS—NPCA
representations for this data set, which agreed well with
the results outlined here. The different representations are
compared statistically in § 3 (h).

(f) Cat cortex—OSA

The cat cortical connectivity data, which were graded
in three categories of density strengths, offered the chance
to explore the effect of such finer categorizations on the
structure of optimal connectivity clusters. We first report
the results for the more finely graded classification, then
for a classification of the data simply into binary cate-
gories of existing or apparently absent connections.

For the graded data, 108 different optimal solutions
existed for the case of balanced attraction and repulsion
weights. These configurations consisted of five to nine
clusters and possessed a combined cost of 700 to 707
(acknowledging the different density strengths), with 348
to 394 connections running between the clusters, and 172
to 233 tested non-existing or untested connections
remaining within the clusters. The main clusters, which
appeared consistently across all the solutions were
(1) 5Al, 5m, 5Am, SII, SSAi, SIV, SSAo, 4g, 61, 5BI, 6m,
5Bm, 1, 2, 4, 3a, 3b, 7, AES; (ii) PFCL, pSbh, 35, 36,
Amyg, 2b, Sb, Enr, RS, IA, PFCMd, CGA, IG, CGP,
PFCMil; (iii) P, AAF, AL VP(cortex), All; (iv) PLLS, 17,
18, 19, AMLS, 2a, 2la, 21b, VLS, PMLS (see figure 10a).
Figure 10b,c displays the areas contributing most to
connectivity between the optimal clusters in all solutions,
and to the repulsion of non-existing connections within
the clusters.

For a repulsion weight of 17, all non-existing connec-
tions in the optimal arrangements were located between
the clusters. The seven optimal configurations which
obtained in this case possessed 657 to 675 connections
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Figure 6. (a) Summary of six optimal building-block arrangements (repulsion weight >seven) for the primate visual system.
(b) Ranking of areas contributing to inter-cluster connections for the configurations summarized in figure 6a. The relative
frequencies were obtained by normalization analogous to the process for figure 36 and figure 55.

between the clusters, which resulted in a total weighted
cost of 995 to 104.

Attraction weights for these data were stepped up in 0.3
intervals, to account for the different degrees of density
classification. At an attraction cost of 9.6, all areas formed
one inclusive cluster.

Phil. Trans. R. Soc. Lond. B (2000)

Figure 11 shows a cluster-tree summary of 2069
optimal solutions for the cat cortex computed over all
different settings for the attraction and repulsion weights.
Despite the changes in cluster sizes and composition,
which led to the many weakly associated sets in the plot,
a number of stable clusters can be easily recognized.
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Figure 7. (a) Summary of all 155
optimal configurations for the primate
visual system obtained for series of
different attraction and repulsion
weightings (from repulsion weight of
seven to an attraction weight of 17).
(b) Cluster-tree diagram for the
optimal arrangements presented in
figure 7a. The tree illustrates at which
relative frequency, given at the top,
clusters separate. Lighter shading indi-
cates singular areas completely
separated from other clusters.
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Figure 8. Cluster-count summary of all clusters identified by fixed-radii NPCA in 2D-NMDS representations of primate visual

connectivity.

Particularly striking were the very stable clusters of
somatosensory-motor areas.

The binary classification of these connectivity data,
and their subsequent OSA, led to very similar cluster
structures as the categorization of existing connections in
three classes. The main subdivisions detailed above for
the balanced OSA condition were also recognizable for
balanced OSA arrangements of the binary data, even
though the first two groups of somatosensory-motor and
‘limbic’ areas were more strongly subdivided in the binary
data. The correlation between the cluster-count summa-
ries for the quaternary and binary data (655 optimal
arrangements) under balanced OSA was R=0.61. The
cluster arrangements of the binary data were reduced to
building-block structures at a repulsion weight of ten, and
248 optimal arrangements obtained under this condition.
All areas came together in one cluster for an attraction
weight of 21.

There are two principal ways of interpreting the
graded strengths of existing connections for this set of cat
connectivity data. In the ‘optimistic’ interpretation, which
we followed in the above analysis of the quaternary data,
the numerical values assigned to the different strengths
directly reflect the absolute anatomical strengths or densi-
ties of the connections. On this assumption, it is possible
to evaluate the different connections as if, for instance,
any intermediate-strength connection (with a value of

Phil. Trans. R. Soc. Lond. B (2000)

two) is indeed about twice as strong as two weak connec-
tions (with a strength value of one). In this view, the
connection strength classes approximate interval data. In
a more conservative interpretation, on the other hand,
the strength values are solely numerical labels for ranks of
different connection densities, which are considered
ordinal or nominal. In this case, a direct numerical
comparison of different connection categories would not
be possible. We considered this possibility by modifying
our OSA algorithm in such a way that different connec-
tion categories would be considered independently from
cach other during the optimizations. This was achieved
by giving all connections of a particular category such
high weights that the arrangement of areas possessing this
connection could not be affected, even if all connections
of lower ranks together exerted a contrary influence. In
this way, the overall arrangement was first shaped by the
optimization of the highest ranks, then by next highest and
so on, while the different ranks did not directly interfere
with each other. The weights of the absent and unknown
connections were determined as means of the weights for
the existing connections, weighted by the frequency of
connections in a particular strength category. Applying
such a modified OSA to the finely graded cat connectivity
data yielded a wunique cluster arrangement, which
resembled the main subdivisions obtained for the balanced
OSA of the quaternary data. Differences between the
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(b)
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Figure 9. (a) Optimal sets of primate somatosensory-motor
areas, obtained for balanced attraction and repulsion
weighting. (b) Optimal building block sets of somatosensory-
motor areas in the macaque (repulsion weight of six). The
diagram summarizes five different optimal arrangements.

arrangements existed in secondary somatosensory-motor
and visual area clusters becoming apparent in the latter
approach. The agreement between cluster-count plots of
the two approaches was R = 0.56.

(g) Cat cortex—NPCA

The main features of the organization of the cat
connectivity data were again confirmed by independent
analysis of the same data by the NMDS—-NPCA
approach. For this method, as for the OSA analyses, the
data were classified in two different ways: as existing or
absent connections, or with three different grades of
strength for the existing data. Figure 12 shows a cluster-
count summary for all solutions derived with this
approach, using 2D and 5D NMDS representations as
well as various clustering paradigms and parameters for
the binary and quaternary data. Despite the averaging
effect of the different settings, the general picture resem-
bles that resulting from the OSA analyses, and summaries
of the two different methodological approaches show a
correlation of R=0.73 (compared to balanced OSA of
quaternary data).

Phil. Trans. R. Soc. Lond. B (2000)

(h) Validation of cluster configurations

We tested the significance of the optimal cluster config-
urations by comparing the lowest costs that we obtained
from analysis of the actual data and for analyses of 20
randomly reshuffled data sets, respectively. All the
compared sets were analysed under the balanced OSA
condition. A comparison of these minimal costs for all
data sets is given in table 2. The minimal cost from the
random data sets had means that were much, and statisti-
cally significantly, greater (between six standard devia-
tions for the somatosensory set and 42 standard
deviations for the cat data set) than the minimal cost of
actual connectivity clusters. This confirms the conclusion
from our initial small-world analysis, that cortical
connectivity 1s organized in local clusters of densely inter-
connected areas.

Correlations between clusters obtained from the real
data and from randomly reshuffled data further showed
that the actual clusters had no similarity with any of the
random cluster solutions: all correlation coefficients were
very close to zero (average correlation: 0.01). There was,
however, a good correlation between the configurations
obtained for real data under the different OSA conditions
of balanced weights and high repulsion, with the correla-
tion coeflicients ranging between 0.49 (cat quaternary)
and 0.71 (macaque somatosensory areas). Correlations
between configurations from balanced conditions and
summaries of solutions pooled across all attraction and
repulsion weight settings were also in this region.

4. DISCUSSION

(a) Small-world characteristics of cortical networks

Our results demonstrated that cortical networks were
organized in local clusters of densely interconnected
areas. This aspect of organization was initially indicated
by the local cluster indices we computed for all data sets
(see table 1, columns 6—8). These indices demonstrated
that the average degree of local connectivity was almost
twice as high as the general level of interconnectedness
between cortical areas. We also computed coeflicients for
the characteristic path lengths in all data sets. These
indices describe the average shortest paths between any
two areas in the cortical network. The values in table 1
(columns 2-5) showed that the characteristic path
lengths of the actual connectivity data were somewhat
larger, but still in the same order of size, as the short
characteristic path lengths of randomly redistributed
data. This result, together with the significant local clus-
tering of the networks, suggests that cortical connectivity
possesses attributes of ‘small-world’ networks, as defined
by (Watts & Strogatz 1998), that is, C,.,;>C,,, and
L..a~L,, The organization of small-world networks
allows eflicient processing and propagation of signals, as
such systems combine very short average path lengths
with a tight local integration of processing nodes. The
original paper by Watts & Strogatz (1998) investigated a
first example of a completely mapped neural network,
the connectivity of the nematode Caenorhabditis elegans,
and found it to possess small-world features. Our study
shows that mammalian cortical connectivity possessed
shorter characteristic path lengths than the
C. elegans network (L, 0, = 2.63), combined with a higher
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Figure 10. (a) Summary of 108 optimal area sets for the cat cortex, using balanced attraction and repulsion weights. Connections
entering this analysis were specified in three strength categories. (/) Ranking of the 20 areas that were contributing most to
inter-cluster connectivity in all optimal configurations summarized in figure 10a. All frequencies are normalized as for figure 3.
Frequencies of inter-cluster connections are shown in lighter shading, those of absent connections within the clusters in darker
shading. (¢) Top 20 areas ranked for relative frequency of non-existing connections within the optimal sets displayed in figure

10a.

absolute local clustering (C g0, =0.28). These attributes
may be partly due to a higher degree of connectedness in
the cortical networks. Indeed, the relative degree of local
clustering (C,.,/C\.,) 1s higher in C. elegans (5.6) than it is
for the cortical data (between 1.8 and 3). The companion

Phil. Trans. R. Soc. Lond. B (2000)

paper by Stephan et al. (this issue) confirms that the
efficient organization of cortical connectivity has func-
tional implications, as the spread of task-independent
excitation in the primate cortex also displays small-world
characteristics.
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Table 2. Minimal costs obtained in the balanced OSA
condition for actual and 20 randomly reshuffled data set

(The means, p and standard deviations, 0, of the solutions for
randomly reshuffled data show that the actual connectivity
data carry a cost which is far, and significantly, smaller. The
clusters detected are therefore not spurious.)

COSten Ucost ., 0COSt a0
macaque: visual 135 244 4
macaque: somatosensory 34 33 3
macaque: whole cortex 628 830 6
cat: whole cortex 700 1245 13

(b) Optimal set analysis

We developed a new technique, optimal set analysis,
for investigating the cluster structure of complex
networks. This method has a number of advantages over
other methods that have been applied to the analysis of
cortical connectivity (e.g. Young et al. 1995; Jouve et al.
1998; Tononi et al. 1998). OSA 1s founded on an explicit
definition for the overall cluster structure of a network
(conditions GOl and COZ2). Apart from the concept
expressed in this definition, OSA makes no further
assumptions about the structure of the data and does not
require any restructuring or transformation of experi-
mental values. OSA is conceptually simple, and in this
sense, more straightforward to interpret than other
methods. In the course of its derivation of optimal cluster
arrangements, OSA also automatically determines the
optimal number of clusters. The method can analyse
incomplete data sets and can be applied (with current
computer technology) to the analysis of very large
networks (largest tested >2000 nodes). The technique
takes into account that there might be several, or very
many, equally good solutions for the optimization
problem. The method is not restricted to the analysis of
neuronal connectivity, and in principle any problem that
can be mathematically expressed as a graph (that is, as
an interconnected system) can be analysed. OSA can
accommodate metric, ordinal and categorical information
as weights for the ‘edges’ of a graph, unlike many other
types of graph analysis presently. We exemplified this by
means of the two different assumptions we used for OSA
analysis of the cat connectivity data, and our hierarchical
analysis, which used a similar data-analytic approach
(Hilgetag, O’Neill & Young, this issue).

'To make an even wider range of neural data accessible to
analysis, various other cost functions could be integrated
with the optimization algorithm used by OSA. The method
described by Tononi et al. (1998) provides a more general
framework than the NPCA used here. Their method works
on object coordinates and not object relations or distances.
It can identify nonlinear relationships, but it requires the
testing of large subsets of the data. OSA provides a
systematic approach to this latter problem, and a combina-
tion of both methods (i.e. the integration of Tononi et al’s
clustering indices as OSA cost functions) could allow a
general and flexible approach to functional data.

(c) Organization of cortical systems
Our analyses broadly confirmed the subdivisions of

cortical systems in the macaque and the cat inferred from

Phil. Trans. R. Soc. Lond. B (2000)

carlier approaches (Young 1993; Scannell et al. 1995).
There were, however, a number of differences and
methodologically derived idiosyncracies, which we will
discuss in relation to the primate visual system, where
they emerged particularly clearly.

Our analyses confirmed the dichotomy of the primate
visual system. The separation of the areas is exemplified
by the optimal set arrangement obtained for balanced
attraction and repulsion weighting. Here, one cluster
contained the occipito-parietal and parietal areas V2, V3,
VP, V3A, MT, V4t, V4, PIP, LIP, VIP, DP, PO, MSTI,
MSTd, FST and FEF, and a second cluster the inferior-
temporal and prefrontal areas PITv, PI'ld, CI'Tv, CI'ld,
Al'lv, ATTd, STPa, STPp, 7a, TF, TH, VOT and 46. The
unique position of primary visual cortex (V1) is expressed
by its separation from either of the large clusters. This
grouping, which obtained for the balanced case of our
cluster definition, shows considerable agreement, but also
some notable differences, compared with the widely
assumed structure of the dorsal and ventral visual
streams. Most conspicuously, the prototypical ‘ventral’
area, V4, appeared in a group with otherwise ‘dorsal’
areas, and the second ‘ventral’ cluster contained an area,
7a, which most systems neuroscientists would associate
with the ‘dorsal’ stream.

Why are V4 and area 7a apparently misassigned in
these optimal clusters? On the one hand, this may illus-
trate the limitations of the approach. The mismatch
between well-founded neurophysiological ideas about the
properties of these areas and the clusters with which they
associated here could suggest that our analysis of a single
type of data, albeit with an explicit and intuitive defini-
tion of cost, is insufficient. It may be that a satisfactory
classification of primate visual areas will require a wider
variety of information about connectivity, and perhaps
more complex criteria. On the other hand, specific
aspects of data structure may themselves give rise to the
apparent misassignment. For the x*-test in Young et al.
(1995), the ventral stream was defined as V4, VOT, PI'ld,
PI'Tv, CI'ld, CITv, AI'ld and AITv, and the dorsal as
MT(V5), MSTd, MST1, FST, PO, LIP, VIP, DP and 7a.
All other areas were classified as ‘early’ or ‘late’. We re-
examined the connectivity between the Young et al. (1995)
groupings and found that they represented the optimal
(and unique) arrangement for these areas according to
the OSA cost functions. This arrangement had a cost of
30, while the same arrangement with V4 and 7a
swapped carried a cost of 51. V4 and 7a swapped into the
‘incongruous’ assignments derived by OSA only when the
connections of all 32 areas were included. In this case,
the cost went from 135 for our apparently paradoxical
arrangement to 141, when V4 was placed in the ventral
and 7a in the dorsal stream. Hence, adding the ‘early’
and the ‘late’ areas of Young ef al. (1995) drives V4 and
7a to the anomalous groupings. Our explanation is that
the earlier visual areas tend to cluster with the dorsal
stream. These areas share many interconnections with
V4, and so draw V4 towards the dorsal cluster when all
areas are included. Correspondingly, all the ‘late’ areas
except FEF tend to cluster with the ventral structures,
and share many connections with 7a, drawing this area
towards the ventral grouping. Hence, the apparent mis-
assignments of these areas reflect a feature of data
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structure: the dorsal-ventral dichotomy is not orthogonal
to the early—late organization of areas. The dorsal stream
tends to be ‘lower’ and the ventral stream ‘higher’, and
the positions of V4 and 7a in the latter respect affect
their clustering assignments. V4 is lower than 7a, and
tends to cluster with its early associates, while the oppo-
site 1s true for 7a. This aspect of data structure is evident
in the balanced solution, but is less apparent when the
pooled solutions from all attraction-repulsion weight
settings are considered. In this more general case, area
V4 associates more appropriately with ventral stream
areas (figure 7a,b). This result is due to V4’s separation
from dorsal stream areas for higher repulsion weights,
indicating that V4 possesses many connections with the
dorsal group of areas, but that is also separated from
them by many non-existing connections. Consequently,
the analyses confirm that V4 is integrated with both
ventral and (particularly early) dorsal areas.

A division of visual cortex has recently also been
suggested for the cat by Lomber et al. (1996). These
researchers used cooling to reversibly deactivate cortex
along the middle suprasylvian sulcus and the posterior
suprasylvian gyrus, and to compare the functions of these
cortices. They found a dissociation of functions, which
they linked to differences in the underlying visual path-
ways. Our analysis of global connectivity in the cat
cortex, however, found no evidence for different connec-
tivity-based streams (see figures 10-12), and cat visual
areas formed a rather homogeneous cluster. It remains to
be established whether and how these functional differ-
ences can be related to the underlying anatomical organ-
ization (Young et al., this issue).

(d) Inter-cluster connection analysis

We performed an analysis of the connections running
between the optimal sets of areas. The results of this
analysis suggested the areas most often involved in
making connections to other clusters. It can thus help to
identify potentially important points of contact between
the clusters, or areas that are only loosely integrated in
clusters. The results were again of particular interest for
the primate visual cortex, where they may help to point
out regions of reconvergence or cross-talk between the
two visual streams.

Looking at the ranking for connections between
optimal primate visual clusters (obtained for balanced
OSA, figure 5b), the strongest contributor to inter-cluster
connectivity was area 7a. This area is also identified by
Jouve et al. (1998) as an important mediator between the
dorsal and ventral streams. However, V4t, which was also
identified as a possible mediator between the streams by
Jouve et al. (1998), was among the most unlikely candidates
possessing no inter-stream connections. The ventral and
dorsal subdivisions of posterior inferior temporal cortex,
the frontal eye fields, TF, STP, VOT and area 46 were
more communicative between the optimal clusters. It
would seem therefore that there are multiple opportunities
for cross-talk and reconvergence of the visual streams (see
Young 1992; Young et al. 1995). However, the present
analysis contained no information on strengths of connec-
tions nor on the laminar destinations of projections, both
of which factors could be important determinants of
functional impact.

Phil. Trans. R. Soc. Lond. B (2000)

Results on interconnections between clusters from the
primate visual cortex building blocks (i.e. higher repul-
sion analyses) most prominently involved area 46 and
areas of the STS. Inferior temporal areas, however, also
appeared unusually communicative between clusters, and
it would therefore seem that this region represents a
widely connected set of nodes for cortical traffic, rather
than the end-point of an analysis sequence (see Young et
al. 1995).

(e) Predictive aspects

Many analyses of connectivity suggest where undiscov-
ered connections, sometimes of particular types (e.g.
Hilgetag et al. 1996), should be found (e.g. Young 1993).
However, on the present basis, the number of predictions
of connections that are likely to be present is significantly
lower than is predicted by a recent missing data estima-
tion procedure (Jouve et al. 1998). In that treatment,
interpolation generated large numbers of new connec-
tions. The frontal eye fields (FEF), for example, were
predicted to be connected to every visual cortical area
except V1, and V4t to exhibit about 40 new connections
when it is examined in more detail (Jouve et al. 1998).
Indeed, the configuration derived by Jouve and colleagues
from factor analysis of their interpolated matrix is almost
identical (R?>0.92 by Procrustes rotation) to a configura-
tion derived by Young (1992) from the very unlikely limit-
case assumption that all unreported connections exist.
Few researchers would credit that such profuse but
unobserved connectivity could be awaiting discovery. We
have wondered, therefore, whether the interpolation algo-
rithm employed by Jouve and colleagues can be realistic.
Their procedure used a parameter derived from large,
well-defined and well-studied cortical areas to interpolate
connections for less well-studied, often poorly defined
cortical areas, which in general are small. But what may
hold for V1, V2, V4 and other large, well-studied areas
may not hold for small strips of cortex such as V4t, or for
poorly defined regions. Similarly, the interpolation proce-
dure did not appear to take account of the probability
that false negatives are less likely than false positives if
one considers anatomical methodology, in which a good
deal of the brain is often sectioned, and one can see trans-
ported label, even in surprising places, if it is present.
Further experimental neuroanatomy, motivated by expec-
tations from the analysis of existing experiments, would
clarify these uncertainties. The predictions of undiscov-
ered connectivity made by Jouve ef al. (1998) are particu-
larly worthy of experimental study because they have led
to the supposition of a theoretically interesting ‘relay
stream’ that they believe lies between the dorsal and
ventral streams of processing. The principal members of
this relay stream, however, are V4t and FEF, which are
also the principal recipients of interpolated new connec-
tions. It is possible, therefore, that the ‘relay stream’ is a
property of interpolated data structure and not of the real
visual system, and it is the case that analyses of real data
see no sign of it.

The present results also allow predictions for further
neuroanatomical experiments. For example, members of a
cluster are more often connected to one another than
would be expected for cortical connectivity in general.
Hence, if two areas whose interconnections have not yet
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been studied are consistently found together in a cluster,
there is a high likelihood that the areas will prove to be
connected. Specific predictions of this type can be gener-
ated by comparing cluster cohabitees, visible in the cluster
diagrams, with as yet unreported connections, which
have been detailed elsewhere (e.g. Felleman & Van Essen
1991; Hilgetag et al. 1996).

5. CONCLUSIONS

Our results show that clusters of differentially
connected arcas can be detected reliably in mammalian
cortical systems by independent statistical and optimiza-
tion approaches. The cluster arrangements were clearest
for the primate visual system and the cat cortical system.
In the primate visual system, the results confirmed a
subdivision into three main groups of primary, ‘ventral’
and ‘dorsal’ areas. Interestingly, such an organization was
also borne out by cluster analyses of the spread of task-
independent activity in the same system (Stephan et al.,
this issue). The larger variability in the results for other
systems might be due to the characteristics of the respec-
tive data, which did not, for example, distinguish
between known absent and so-far unstudied connections.
This re-emphasizes the importance of explicitly reporting
absent connections from anatomical experiments, but it is
clear that new experimental data will be required to
clarify many of these issues (Young et al. 1993). The
density of the global macaque connectivity data was
considerably lower than the density of all other data sets.
We suspect that existing experimental information and
collations of corticocortical connections in this system are
markedly incomplete. We have begun efforts to create a
more formalized, detailed, extensive and up-to-date
collation system (Burns & Young, this issue; Stephan et
al., this issue), but the likelihood that significant connec-
tions in the monkey remain to be discovered further
reinforces the importance of further experimental studies.
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